Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Matern Fetal Neonatal Med ; 36(2): 2279931, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953255

RESUMO

INTRODUCTION: In the near future, stem cell research may lead to several major therapeutic innovations in medical practice. Secretome, a "by-product" of stem cell line cultures, has many advantages. Its easiness of storage, usage, and fast direct effect are some of those to consider. Fetal growth restriction (FGR) remains one of the significant challenges in maternal-fetal and neonatal medicine. Placentation failure is one of the most profound causal and is often related to increasing sFlt-1 in early pregnancy. This study aimed to investigate hUC-MSC secretome in ameliorating sFlt-1 and how to improve outcomes in preventing FGR in an animal model. MATERIALS AND METHODS: Pristane-induced systemic lupus erythematosus (SLE) in a mouse model was used to represent placentation failure and its consequences. Twenty-one mice were randomized into three groups: (I) normal pregnancy, (II) SLE, and (III) SLE with secretome treatment. Pristane was administered in all Groups four weeks prior mating period. Secretome was derived from human umbilical cord mesenchymal stem cells (hUC-MSC) conditioned medium on the 3rd and 4th passage, around day-21 until day-28 from the start of culturing process. Mesenchymal stem cell was characterized using flow cytometry for CD105+, CD90+, and CD73+ surface antigen markers. Immunohistochemistry anlysis by using Remmele's Immunoreactive Score (IRS) was used to quantify the placental sFlt-1 expression in each group. Birth weight and length were analyzed as the secondary outcome. The number of fetuses obtained was also calculated for pregnancy loss comparison between Groups. RESULTS: The administration of secretome of hUC-MSC was found to lower the expression of the placental sFlt-1 significantly in the pristane SLE animal model (10.30 ± 1.40 vs. 4.98 ± 2.57; p < 0.001) to a level seen in normal mouse pregnancies in Group I (3.88 ± 0.49; p = 0.159). Secretome also had a significant effect on preventing fetal growth restriction in the pristane SLE mouse model (birth weight: 354.29 ± 80.76 mg vs. 550 ± 64.03 mg; p < 0.001 and birth length: 14.43 ± 1.27 mm vs. 19.00 ± 1.41 mm), comparable to the birth weight and length of the normal pregnancy in Group I (540.29 ± 75.47 mg and 18.14 ± 1.34 mm, p = 0.808 and = 0.719). Secretome administration also showed a potential action to prevent high number of pregnancy loss as the number of fetuses obtained could be similar to those of mice in the normal pregnant Group (7.71 ± 1.11 vs. 7.86 ± 1.06; p = 0.794). CONCLUSIONS: Administration of secretome lowers sFlt-1 expression in placenta, improves fetal growth, and prevents pregnancy loss in a mouse SLE model.


Assuntos
Retardo do Crescimento Fetal , Lúpus Eritematoso Sistêmico , Células-Tronco Mesenquimais , Secretoma , Animais , Feminino , Humanos , Camundongos , Gravidez , Aborto Espontâneo/metabolismo , Biomarcadores/metabolismo , Peso ao Nascer , Retardo do Crescimento Fetal/terapia , Retardo do Crescimento Fetal/metabolismo , Modelos Animais , Placenta/metabolismo , Fator de Crescimento Placentário/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
Curr Res Transl Med ; 72(2): 103437, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38244275

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is a progressive disease. Many drugs currently being used for the management of T2D have minimal effect on pancreatic beta cells regeneration. Cell-based therapies might provide potential benefits in this aspect. METHODS: A pilot study in five T2D patients with 12 months follow-up was performed to evaluate the effect of autologous bone marrow mononuclear stem cells (BM-MNCs) infusion into pancreatic arteries on the insulin requirement, beta-cell function, insulin resistance, and systemic inflammatory marker (CRP). RESULTS: The primary endpoint, a 50 % reduction of total insulin doses from baseline, was not achieved in this study. However, a trend of increasing fasting C-peptide (p = 0.07) and C-peptide 60' (p = 0.07) and 90' (p = 0.07) after a mixed-meal tolerance test was observed 12 months post-infusion compared to baseline levels. A similar result was observed for the homeostatic model assessment of beta cell function (HOMA1-B), an index for beta cell function. No improvement was observed for insulin resistance measured by homeostasis model assessment of insulin resistance (HOMA1-IR) and systemic inflammatory parameter. CONCLUSION: Intraarterial pancreatic autologous BM-MNCs infusion might potentially improve beta cell function in T2D patients, although further study is needed to confirm this finding.

3.
Stem Cells Cloning ; 15: 1-9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444427

RESUMO

Background: Umbilical cord mesenchymal stem cells (UC-MSCs)-derived secretome is currently used in regenerative therapy. MSCs are believed to secrete a wide spectrum of bioactive molecules which give paracrine effects in immunomodulation and regenerative capacities. One group that was found in secretome is interleukins (ILs), a cytokine that plays an essential role in the process of proliferation, differentiation, maturation, migration, and adhesion of immune cells. However, as there are many types of ILs, the profile of ILs in the UC-MSCs-derived secretome has been limitedly reported. Therefore, in this study, we would like to profile and detect the interleukin concentration secreted by UC-MSCs. Methods: UC-MSCs-derived secretome was collected from UC-MSCs passage 5 after 24- and 48-hour incubation (n=9). Secretome was filtered using 0.2 µm and stored at -80°C for further detection. All samples were normalized before the interleukin (IL-2, IL-4, IL-6, IL-9, IL-10, IL-12, IL-17A) detection using a MACSPlex Cytokine Kit. Results: The IL-6 has the highest concentration among other interleukins in both groups and increases significantly (p<0.003) after incubation for 48 hours. The pro-inflammatory factors are decreasing while anti-inflammatory factors are increasing after 48-hour incubation. Discussion: Our studies show that the UC-MSCs secrete pro- and anti-inflammatory interleukins. The concentration of anti-inflammatory interleukins shows to be increasing, while the pro-inflammatory interleukins are decreasing within the longer incubation time, but this not be applicable for IL-10 and IL-6. IL-6 has the highest concentration among other ILs. These results may provide important clues regarding when is the right time for secretome to be used in therapy patients, because all the molecules in the secretome can lead to many clinical manifestations.

4.
Regen Eng Transl Med ; 8(1): 43-54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33723519

RESUMO

Abstract: The COVID-19 disease, which is caused by the novel coronavirus, SARS-CoV-2, has affected the world by increasing the mortality rate in 2020. Currently, there is no definite treatment for COVID-19 patients. Several clinical trials have been proposed to overcome this disease and many are still under investigation. In this review, we will be focusing on the potency of mesenchymal stem cells (MSCs) and MSC-derived secretome for treating COVID-19 patients. Fever, cough, headache, dizziness, and fatigue are the common clinical manifestations in COVID-19 patients. In mild and severe cases, cytokines are released hyper-actively which causes a cytokine storm leading to acute respiratory distress syndrome (ARDS). In order to maintain the lung microenvironment in COVID-19 patients, MSCs are used as cell-based therapy approaches as they can act as cell managers which accelerate the immune system to prevent the cytokine storm and promote endogenous repair. Besides, MSCs have shown minimal expression of ACE2 or TMPRSS2, and hence, MSCs are free from SARS-CoV-2 infection. Numerous clinical studies have started worldwide and demonstrated that MSCs have great potential for ARDS treatment in COVID-19 patients. Preliminary data have shown that MSCs and MSC-derived secretome appear to be promising in the treatment of COVID-19. Lay Summary: The COVID-19 disease is an infection disease which affects the world in 2020. Currently, there is no definite treatment for COVID-19 patients. However, several clinical trials have been proposed to overcome this disease and one of them is using mesenchymal stem cells (MSCs) and MSC-derived secretome for treating COVID-19 patients. During the infection, cytokines are released hyper-actively which causes a cytokine storm. MSCs play an important role in maintaining the lung microenvironment in COVID-19 patients. They can act as cell managers which accelerate the immune system to prevent the cytokine storm and promote the endogenous repair. Therefore, it is important to explore the clinical trial in the world for treating the COVID-19 disease using MSCs and MSC-derived secretome.

5.
Eur Arch Otorhinolaryngol ; 279(4): 1805-1812, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34008035

RESUMO

PURPOSE: Sensorineural hearing loss (SNHL) is commonly caused by the death or dysfunction of cochlear cell types as a result of their lack of regenerative capacity. However, regenerative medicine, such as stem cell therapy, has become a promising tool to cure many diseases, including hearing loss. In this study, we determined whether DPSCs could differentiate into cochlear hair cell in vitro. METHODS: DPSCs derived from human third molar dental pulp were induced into NSCs using a medium containing basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) for 7 days, and then into cochlear hair cell using a medium containing EGF and IGF-1 for the next 14 days. We used the neuroepithelial protein marker nestin and cochlear hair cell marker myosin VIIa as the markers for cells differentiation. Cells expressing the positive markers under the microscope were confirmed to have differentiated into cochlear hair cell. RESULTS: DPSCs were successfully induced to differentiate into NSCs, with mean 24% nestin-positive cells. We found that DPSC-derived NSCs have a great capacity in differentiating into inner ear hair cell-like cells with an average of 81% cells presenting myosin VIIa. Thus, DPSCs have high potential to serve as a good resource for SNHL treatment. CONCLUSION: We found the high potential of DPSCs to differentiate into NSC. The ability of DPSCs in differentiating into neural lineage cell made them a good candidate for regenerative therapy in neural diseases, such as SNHL.


Assuntos
Polpa Dentária , Perda Auditiva Neurossensorial , Diferenciação Celular , Fator de Crescimento Epidérmico/metabolismo , Células Ciliadas Auditivas , Perda Auditiva Neurossensorial/terapia , Humanos , Células-Tronco
6.
Medicines (Basel) ; 10(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36662487

RESUMO

Background: Polycystic ovary syndrome (PCOS) is a chronic disorder and is one of the most common endocrine disorders in women of a reproductive age. The prevalence of PCOS is growing globally; 52% of women in Southeast Asia alone suffer from this disorder. This disorder is caused by chronic hyperandrogenism, which hinders folliculogenesis. There is also a close relationship between hyperandrogenism and hyperinsulinemia/insulin resistance (IR), and it is estimated that 40-80% of PCOS patients suffer from insulin resistance (IR). Mesenchymal stem cells (MSCs) and their secretomes have been shown to alleviate PCOS symptoms by decreasing IR and androgen secretion by reducing inflammation. This study aimed to systematically review the literature to study the reported potential of MSCs and their secretomes in decreasing inflammation markers in PCOS treatment. Methods: A systematic literature search was performed on EMBASE, PubMed (MEDLINE), and the Cochrane Library with the terms insulin-resistant PCOS, mesenchymal stem cells, and secretome or conditioned medium as the search keywords. A total of 317 articles were reviewed. Four articles were identified as relevant for this systematic review. Results: The results of this study supported the use of mesenchymal stem cells and their secretions in decreasing inflammatory markers in the treatment of polycystic ovary syndrome. Conclusions: This review provided evidence that treatment with mesenchymal stem cells and their secretomes has the potential to treat PCOS due to its ability to downregulate androgen levels and increase insulin sensitivity, which thereby lowers the level of proinflammatory factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA